Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762103

RESUMO

In the pursuit of identifying the underlying pathways of ocular diseases, the use of cell lines such as (retinal ganglion cell-5) RGC-5 and 661W became a valuable tool, including pathologies like retinal degeneration and glaucoma. In 2001, the establishment of the RGC-5 cell line marked a significant breakthrough in glaucoma research. Over time, however, concerns arose about the true nature of RGC-5 cells, with conflicting findings in the literature regarding their identity as retinal ganglion cells or photoreceptor-like cells. This study aimed to address the controversy surrounding the RGC-5 cell line's origin and properties by comparing it with the 661W cell line, a known cone photoreceptor model. Both cell lines were differentiated according to two prior published redifferentiation protocols under the same conditions using 500 nM of trichostatin A (TSA) and investigated for their morphological and neuronal marker properties. The results demonstrated that both cell lines are murine, and they exhibited distinct morphological and neuronal marker properties. Notably, the RGC-5 cells showed higher expression of the neuronal marker ß-III tubulin and increased Thy-1-mRNA compared with the 661W cells, providing evidence of their different properties. The findings emphasize the importance of verifying the authenticity of cell lines used in ocular research and highlight the risks of contamination and altered cell properties.


Assuntos
Contaminação de Medicamentos , Glaucoma , Animais , Camundongos , Diferenciação Celular , Linhagem Celular , Células Fotorreceptoras Retinianas Cones , Tubulina (Proteína)
2.
Eur J Hum Genet ; 31(10): 1139-1146, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507557

RESUMO

The prevalence of pathogenic and likely pathogenic (P/LP) variants in genes associated with cancer predisposition syndromes (CPS) is estimated to be 8-18% for paediatric cancer patients. In more than half of the carriers, the family history is unsuspicious for CPS. Therefore, broad genetic testing could identify germline predisposition in additional children with cancer resulting in important implications for themselves and their families. We thus evaluated clinical trio genome sequencing (TGS) in a cohort of 72 paediatric patients with solid cancers other than retinoblastoma or CNS-tumours. The most prevalent cancer types were sarcoma (n = 26), neuroblastoma (n = 15), and nephroblastoma (n = 10). Overall, P/LP variants in CPS genes were identified in 18.1% of patients (13/72) and P/LP variants in autosomal-dominant CPS genes in 9.7% (7/72). Genetic evaluation would have been recommended for the majority of patients with P/LP variants according to the Jongmans criteria. Four patients (5.6%, 4/72) carried P/LP variants in autosomal-dominant genes known to be associated with their tumour type. With the immediate information on variant inheritance, TGS facilitated the identification of a de novo P/LP in NF1, a gonadosomatic mosaic in WT1 and two pathogenic variants in one patient (DICER1 and PALB2). TGS allows a more detailed characterization of structural variants with base-pair resolution of breakpoints which can be relevant for the interpretation of copy number variants. Altogether, TGS allows comprehensive identification of children with a CPS and supports the individualised clinical management of index patients and high-risk relatives.


Assuntos
Predisposição Genética para Doença , Neoplasias , Humanos , Criança , Mutação em Linhagem Germinativa , Neoplasias/genética , Testes Genéticos/métodos , Genótipo , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
3.
Stem Cell Res ; 67: 103028, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652844

RESUMO

The STX1B gene encodes the presynaptic protein syntaxin-1B, which plays a major role in regulating fusion of synaptic vesicles. Mutations in STX1B are known to cause epilepsy syndromes, such as genetic epilepsies with febrile seizures plus (GEFS+). Here, we reprogrammed skin fibroblasts from a female patient affected by GEFS+ to human induced pluripotent stem cells (iPSCs). The patient carries an InDel mutation (c.133_134insGGATGTGCATTG; p.Lys45delinsArgMetCysIleGlu and c.135_136AC > GA; p.Leu46Met), located in the regulatory Habc-domain of STX1B. Successful reprogramming of cells was confirmed by a normal karyotype, expression of several pluripotency markers and the potential to differentiate into all three germ layers.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Epilepsia/genética , Mutação INDEL , Fibroblastos , Diferenciação Celular , Sintaxina 1/genética , Sintaxina 1/metabolismo
4.
Stem Cell Res ; 52: 102240, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610017

RESUMO

Neurog2 is the gene encoding the neuronal transcription factor NGN2, which can convert stem cells into functional neurons in a fast and efficient way. Here we report the generation of two iPS cell lines, where DOX inducible constructs of neurog2 either without or with T2A-eGFP were inserted into the safe-site locus AAVS1. These iPS cell lines, BIONi010-C-13 and BIONi010-C-15, respectively, stay pluripotent without DOX but differentiate to (GFP positive) neurons when DOX is added without the need of differentiation factors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Edição de Genes , Genes Reporter , Transgenes
5.
Fetal Diagn Ther ; 47(11): 841-852, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877902

RESUMO

OBJECTIVES: The aims of the study were to assess the false-positive and uninformative test rate with first trimester cell-free DNA (cfDNA) screening for common trisomies and microdeletion 22q11.2 (22q11.2DS) and to examine women's attitudes toward such an approach. METHODS: This is a prospective study at the Prenatal Medicine Department of the University of Tübingen, Germany, at 11-13 weeks. In all pregnancies, a detailed ultrasound examination was carried out, followed by a cfDNA analysis for common trisomies and 22q11.2DS. In cases where the cfDNA analysis indicated 22q11.2DS, invasive prenatal diagnostic testing and parental testing were performed. After delivery, a detailed neonatal clinical examination was carried out including further genetic testing. Prior to counselling about the study, we asked the pregnant women who were potentially eligible for the study to anonymously report on their knowledge about 22q11.2DS. RESULTS: A total of 1,127 pregnancies were included in the final analysis of the study. The first cfDNA test was uninformative in 15 (1.33%) pregnancies. In 10 (0.89%) cases, the test remained uninformative, even after the second blood sample. There were 3 (0.27%) cases with a positive cfDNA test for 22q11.2DS. In all, 983 women returned the anonymous questionnaire prior to study participation. Only 80 (8.1%) women responded that they felt familiar or very familiar with 22q11.2DS. CONCLUSION: The addition of 22q11.2DS in first trimester cfDNA screening for common trisomies is feasible. The uninformative test rate for common trisomies and 22q11.2DS is 0.9%, and the false-positive rate for 22q11.2DS is 0.3%. Awareness and education around 22q11.2DS should be improved.


Assuntos
Ácidos Nucleicos Livres , Testes para Triagem do Soro Materno , Feminino , Humanos , Recém-Nascido , Gravidez , Primeiro Trimestre da Gravidez , Estudos Prospectivos , Trissomia/diagnóstico , Trissomia/genética
7.
Stem Cell Res ; 48: 101961, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32911325

RESUMO

Fibroblasts were isolated from skin biopsies of four patients diagnosed with schizophrenia and from one healthy control. Patient fibroblasts were transfected with five episomal, non-integrative reprogramming vectors to generate human induced pluripotent stem cells (iPSC). Reprogrammed iPSC showed consistent expression of several pluripotency markers, loss of expression of exogenous reprogramming vectors and ability to differentiate into all three germ layers. Additionally, iPSC maintained their normal karyotype during reprogramming. These generated cell lines can be used to study early neurodevelopmental and neuroinflammatory processes in schizophrenia in a patient-derived in vitro model.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Estudos de Casos e Controles , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Fibroblastos , Humanos , Esquizofrenia/genética
8.
Am J Med Genet A ; 182(11): 2680-2684, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803851

RESUMO

Recombinant chromosome 8 (Rec8) syndrome (San Luis Valley [SLV] syndrome; OMIM #179613) is a rare chromosome disorder associated with intellectual disability, congenital heart defects, variable skeletal and urogenital anomalies, and dysmorphic features. It is characterized by a partial terminal deletion of 8p and a partial terminal duplication of 8q, which is usually due to meiotic recombination of a pericentric inversion of chromosome 8 of a healthy carrier parent. There are only few reports of cases with breakpoints defined at the molecular level by molecular karyotyping. We report on a case of Rec8 syndrome with previously unreported breakpoints in a male fetus with intrauterine growth restriction, hypogenesis of the corpus callosum, bilateral cleft lip/palate, and congenital heart defect. Cytogenetic analysis revealed a recombinant chromosome 8 [46,XY,rec(8)(qter→q21.11::p23.3→qter)] secondary to a paternal pericentric inversion [46,XY,inv(8)(p23.3q21.11)]. Molecular karyotyping correspondingly showed a terminal copy number loss of 1.4 Mb (arr[hg19] 8p23.3(158048_1514749)×1) and a terminal copy number gain of chromosome band 8q21.11q24.3 of 69.8 Mb (arr[hg19] 8q21.11q24.3(76477367_146295771)×3). To our knowledge, this is the fourth reported case diagnosed prenatally. We describe the postnatal clinical course of the male newborn. Furthermore, we review and compare the phenotypic features and breakpoints of 74 reported Rec8/SLV cases.


Assuntos
Anormalidades Múltiplas/patologia , Transtornos Cromossômicos/patologia , Inversão Cromossômica , Cromossomos Humanos Par 8/genética , Doenças Fetais/patologia , Anormalidades Múltiplas/genética , Adulto , Transtornos Cromossômicos/genética , Feminino , Doenças Fetais/genética , Humanos , Recém-Nascido , Masculino , Fenótipo
9.
BMC Med Educ ; 20(1): 218, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660496

RESUMO

BACKGROUND: Audience response systems allow to activate the audience and to receive a direct feedback of participants during lectures. Modern systems do not require any proprietary hardware anymore. Students can directly respond on their smartphone. Several studies reported about a high level of satisfaction of students when audience response systems are used, however their impact on learning success is still unclear. METHODS: In order to evaluate the impact of an audience response system on the learning success we implemented the audience response system eduVote into a seminar series and performed a controlled crossover study on its impact on assessments. One hundred fifty-four students in nine groups were taught the same content. In four groups, eduVote was integrated for the first topic while five groups were taught this topic without the audience response systems. For a second topic, the groups were switched: Those groups who were taught before using eduVote were now taught without the audience response system and vice versa. We then analysed the impact of the audience response system on the students' performance in a summative assessment and specifically focused on questions dealing with the topic, for which the audience response system was used during teaching. We further assessed the students' perception on the use of eduVote using questionnaires. RESULTS: In our controlled crossover study we could not confirm an impact of the audience response system eduVote on long-term persistence i.e. the students' performance in the summative assessment. Our evaluation revealed that students assessed the use of eduVote very positively, felt stronger engaged and better motivated to deal with the respective topics and would prefer their integration into additional courses as well. In particular we identified that students who feel uncomfortable with answering questions in front of others profit from the use of an audience response system during teaching. CONCLUSIONS: Audience response systems motivate and activate students and increase their engagement during classes. However, their impact on long-term persistence and summative assessments may be limited. Audience response systems, however, specifically allow activating students which cannot be reached by the traditional way of asking questions without such an anonymous tool.


Assuntos
Instrução por Computador , Avaliação Educacional , Retroalimentação , Smartphone , Ensino , Adulto , Estudos Cross-Over , Feminino , Genética Humana/educação , Humanos , Aprendizagem , Masculino , Modelos Educacionais , Adulto Jovem
10.
Mol Ther Nucleic Acids ; 17: 907-921, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31476669

RESUMO

The generation of induced pluripotent stem cells (iPSCs) from patient's somatic cells and the subsequent differentiation into desired cell types opens up numerous possibilities in regenerative medicine and tissue engineering. Adult cardiomyocytes have limited self-renewal capacity; thus, the efficient, safe, and clinically applicable generation of autologous cardiomyocytes is of great interest for the treatment of damaged myocardium. In this study, footprint-free iPSCs were successfully generated from urine-derived renal epithelial cells through a single application of self-replicating RNA (srRNA). The expression of pluripotency markers and the in vitro as well as in vivo trilineage differentiation were demonstrated. Furthermore, the resulting iPSCs contained no residual srRNA, and the karyotyping analysis demonstrated no detectable anomalies. The cardiac differentiation of these iPSCs resulted in autologous contracting cardiomyocytes after 10 days. We anticipate that the use of urine as a non-invasive cell source to obtain patient cells and the use of srRNA for reprogramming into iPSCs will greatly improve the future production of clinically applicable cardiomyocytes and other cell types. This could allow the regeneration of tissues by generating sufficient quantities of autologous cells without the risk of immune rejection.

11.
Stem Cells Int ; 2019: 7641767, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31320906

RESUMO

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is gaining in importance in the fields of regenerative medicine, tissue engineering, and disease modeling. Patient-specific iPSCs have as an unlimited cell source a tremendous potential for generating various types of autologous cells. For the future clinical applicability of these iPSC-derived cells, the generation of iPSCs via nongenome integrating methods and the efficient reprogramming of patients' somatic cells are required. In this study, 2 different RNA-based footprint-free methods for the generation of iPSCs were compared: the use of synthetic modified messenger RNAs (mRNAs) or self-replicating RNAs (srRNAs) encoding the reprogramming factors and GFP. Using both RNA-based methods, integration-free iPSCs without genomic alterations were obtained. The pluripotency characteristics identified by specific marker detection and the in vitro and in vivo trilineage differentiation capacity were comparable. Moreover, the incorporation of a GFP encoding sequence into the srRNA enabled a direct and convenient monitoring of the reprogramming procedure and the successful detection of srRNA translation in the transfected cells. Nevertheless, the use of a single srRNA to induce pluripotency was less time consuming, faster, and more efficient than the daily transfection of cells with synthetic mRNAs. Therefore, we believe that the srRNA-based approach might be more appropriate and efficient for the reprogramming of different types of somatic cells for clinical applications.

12.
Stem Cell Res ; 37: 101445, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31075689

RESUMO

Developmental and epileptic encephalopathies (DEE) can be caused by mutations in the KCNA2 gene, coding for the voltage-gated K+ channel Kv1.2. This ion channel belongs to the delayed rectifier class of potassium channels and plays a role during the repolarization phase of an action potential. In this study we reprogrammed fibroblasts from a 30-year-old male patient with DDE carrying a point mutation (c.890G > A, p.Arg297Gln) in KCNA2 to induced pluripotent stem cells. Pluripotency state of the cells was verified by the capability to differentiate into all three germ layers and the expression of several pluripotency markers on RNA and protein levels.


Assuntos
Diferenciação Celular , Epilepsia/genética , Fibroblastos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Canal de Potássio Kv1.2/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Adulto , Células Cultivadas , Reprogramação Celular , Epilepsia/patologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Transtornos do Neurodesenvolvimento/patologia , Fenótipo
13.
EBioMedicine ; 42: 340-351, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30952616

RESUMO

BACKGROUND: Apoptosis-stimulating Protein of TP53-2 (ASPP2) is a tumor suppressor enhancing TP53-mediated apoptosis via binding to the TP53 core domain. TP53 mutations found in cancers disrupt ASPP2 binding, arguing for an important role of ASPP2 in TP53-mediated tumor suppression. We now identify an oncogenic splicing variant, ASPP2κ, with high prevalence in acute leukemia. METHODS: An mRNA screen to detect ASPP2 splicing variants was performed and ASPP2κ was validated using isoform-specific PCR approaches. Translation into a genuine protein isoform was evaluated after establishing epitope-specific antibodies. For functional studies cell models with forced expression of ASPP2κ or isoform-specific ASPP2κ-interference were created to evaluate proliferative, apoptotic and oncogenic characteristics of ASPP2κ. FINDINGS: Exon skipping generates a premature stop codon, leading to a truncated C-terminus, omitting the TP53-binding sites. ASPP2κ translates into a dominant-negative protein variant impairing TP53-dependent induction of apoptosis. ASPP2κ is expressed in CD34+ leukemic progenitor cells and functional studies argue for a role in early oncogenesis, resulting in perturbed proliferation and impaired induction of apoptosis, mitotic failure and chromosomal instability (CIN) - similar to TP53 mutations. Importantly, as expression of ASPP2κ is stress-inducible it defines a novel class of dynamic oncogenes not represented by genomic mutations. INTERPRETATION: Our data demonstrates that ASPP2κ plays a distinctive role as an antiapoptotic regulator of the TP53 checkpoint, rendering cells to a more aggressive phenotype as evidenced by proliferation and apoptosis rates - and ASPP2κ expression results in acquisition of genomic mutations, a first initiating step in leukemogenesis. We provide proof-of-concept to establish ASPP2κ as a clinically relevant biomarker and a target for molecule-defined therapy. FUND: Unrestricted grant support from the Wilhelm Sander Foundation for Cancer Research, the IZKF Program of the Medical Faculty Tübingen, the Brigitte Schlieben-Lange Program and the Margarete von Wrangell Program of the State Ministry Baden-Wuerttemberg for Science, Research and Arts and the Athene Program of the excellence initiative of the Eberhard-Karls University, Tübingen.


Assuntos
Processamento Alternativo , Proteínas Reguladoras de Apoptose/genética , Genes Supressores de Tumor , Leucemia Mieloide Aguda/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estresse Fisiológico/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Citogenética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Stem Cell Res ; 35: 101403, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30769329

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Mutations in the gene PSEN1 encoding Presenilin1 are known to cause familial forms of AD with early age of onset. The most common mutation in the PSEN1 gene is the E280A mutation. iPSCs are an optimal choice for modeling AD, as they can be differentiated in vitro into neural cells. Here, we report the generation of two isogenic iPSC lines with either a homozygous or a heterozygous E280A mutation in the PSEN1 gene. The mutation was introduced into an iPSC line from a healthy individual using the CRISPR-Cas9 technology. Resource table.


Assuntos
Doença de Alzheimer , Linhagem Celular , Técnicas de Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Mutação de Sentido Incorreto , Presenilina-1 , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Substituição de Aminoácidos , Sistemas CRISPR-Cas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Presenilina-1/genética , Presenilina-1/metabolismo
15.
Stem Cell Res ; 34: 101349, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660866

RESUMO

Alzheimer's disease (AD) is the most frequent neurodegenerative disease amongst the elderly. The SNPs rs429358 and rs7412 in the APOE gene are the most common risk factor for sporadic AD, and there are three different alleles commonly referred to as APOE-ε2, APOE-ε3 and APOE-ε4. Induced pluripotent stem cells (iPSCs) hold great promise to model AD as such cells can be differentiated in vitro to the required cell type. Here we report the use of CRISPR/Cas9 technology employed on iPSCs from a healthy individual with an APOE-ε3/ε4 genotype to obtain isogenic APOE-ε2/ε2, APOE-ε3/ε3, APOE-ε4/ε4 lines as well as an APOE-knock-out line.


Assuntos
Apolipoproteínas E/genética , Técnicas de Cultura de Células/métodos , Edição de Genes , Técnicas de Inativação de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Mutação/genética , Adolescente , Linhagem Celular , Homozigoto , Humanos , Masculino
16.
Stem Cell Res ; 33: 6-9, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30292882

RESUMO

Mutations in the KCNA2 gene, coding for the voltage-gated K+ channel Kv1.2, can cause developmental and epileptic encephalopathies. Kv1.2 channels play an important role in the repolarization phase of an action potential in nerve cells. Here, we reprogrammed human skin fibroblasts from a 13-year-old male patient with developmental and epileptic encephalopathy carrying a point mutation (c.982T>G, p.Leu328Val) in KCNA2 to human induced pluripotent stem cells (iPSCs) (HIHDNEi001-A). The cells maintained a normal karyotype and their pluripotency state was verified by the expression and staining of several pluripotency markers and capability to differentiate into all three germ layers.


Assuntos
Encefalopatias/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Potássio Kv1.2/efeitos adversos , Espasmos Infantis/genética , Adolescente , Humanos , Masculino , Mutação
17.
Sci Rep ; 7(1): 16880, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203806

RESUMO

Huntington disease is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the gene encoding the huntingtin protein. Expression of the mutant protein disrupts various intracellular pathways and impairs overall cell function. In particular striatal neurons seem to be most vulnerable to mutant huntingtin-related changes. A well-known and commonly used model to study molecular aspects of Huntington disease are the striatum-derived STHdh cell lines generated from wild type and huntingtin knock-in mouse embryos. However, obvious morphological differences between wild type and mutant cell lines exist, which have rarely been described and might not have always been considered when designing experiments or interpreting results. Here, we demonstrate that STHdh cell lines display differences in cell size, proliferation rate and chromosomal content. While the chromosomal divergence is considered to be a result of the cells' tumour characteristics, differences in size and proliferation, however, were confirmed in a second non-immortalized Huntington disease cell model. Importantly, our results further suggest that the reported phenotypes can confound other study outcomes and lead to false conclusions. Thus, careful experimental design and data analysis are advised when using these cell models.


Assuntos
Proliferação de Células/fisiologia , Aberrações Cromossômicas , Proteína Huntingtina/genética , Modelos Biológicos , Animais , Linhagem Celular , Tamanho Celular , Sobrevivência Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Técnicas de Introdução de Genes , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos
18.
Stem Cell Res ; 17(3): 576-579, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27934586

RESUMO

Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau) gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown. Induced pluripotent stem cells (iPSCs) hold great promise to model FTDP-17 as such cells can be differentiated in vitro to the required cell type. Furthermore, gene-editing approaches allow generating isogenic gene-corrected controls that can be used as a very specific control. Here, we report the generation of genetically corrected iPSCs from a 59-year-old female FTD-17 patient carrying an R406W mutation in the MAPT-gene.


Assuntos
Demência Frontotemporal/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas tau/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Feminino , Fibroblastos/citologia , Demência Frontotemporal/genética , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Mesoderma/citologia , Mesoderma/metabolismo , Pessoa de Meia-Idade , Plasmídeos/genética , Plasmídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Pele/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Stem Cell Res ; 17(3): 600-602, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27934590

RESUMO

Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau) gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown. Induced pluripotent stem cells (iPSCs) hold great promise to model FTDP-17 as such cells can be differentiated in vitro to the required cell type. Furthermore, gene-editing approaches allow generating isogenic gene-corrected controls that can be used as a very specific control. Here, we report the generation of genetically corrected iPSCs from a pre-symptomatic carrier of the R406W mutation in the MAPT-gene.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Proteínas tau/genética , Adulto , Sequência de Bases , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Feminino , Fibroblastos/citologia , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Mesoderma/citologia , Mesoderma/metabolismo , Microscopia de Fluorescência , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Pele/citologia
20.
Stem Cell Res ; 17(3): 550-552, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27789407

RESUMO

Induced pluripotent stem cells (iPSCs) hold great promise to model diseases, where the disease affected cell type is difficult to access. A major obstacle for the development of disease models is the lack of well characterized control iPSCs from old people not affected by such a disease. Furthermore, gene-editing approaches often require iPSCs from healthy donors, where pathogenic mutations can be inserted if patient material is not available. Here, we report the generation of an iPSC line (16423 #6) from a 77-year-old woman, who did not display any disease symptoms at the time, when the skin biopsy was taken.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Idoso , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Fibroblastos/citologia , Voluntários Saudáveis , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Microscopia de Fluorescência , Pele/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...